Anemone-like nanostructures for non-lithographic, reproducible, large-area, and ultra-sensitive SERS substrates.

نویسندگان

  • Bihter Daglar
  • Gokcen Birlik Demirel
  • Tural Khudiyev
  • Tamer Dogan
  • Osama Tobail
  • Sevde Altuntas
  • Fatih Buyukserin
  • Mehmet Bayindir
چکیده

The melt-infiltration technique enables the fabrication of complex nanostructures for a wide range of applications in optics, electronics, biomaterials, and catalysis. Here, anemone-like nanostructures are produced for the first time under the surface/interface principles of melt-infiltration as a non-lithographic method. Functionalized anodized aluminum oxide (AAO) membranes are used as templates to provide large-area production of nanostructures, and polycarbonate (PC) films are used as active phase materials. In order to understand formation dynamics of anemone-like structures finite element method (FEM) simulations are performed and it is found that wetting behaviour of the polymer is responsible for the formation of cavities at the caps of the structures. These nanostructures are examined in the surface-enhanced-Raman-spectroscopy (SERS) experiment and they exhibit great potential in this field. Reproducible SERS signals are detected with relative standard deviations (RSDs) of 7.2-12.6% for about 10,000 individual spots. SERS measurements are demonstrated at low concentrations of Rhodamine 6G (R6G), even at the picomolar level, with an enhancement factor of ∼10(11). This high enhancement factor is ascribed to the significant electric field enhancement at the cavities of nanostructures and nanogaps between them, which is supported by finite difference time-domain (FDTD) simulations. These novel nanostructured films can be further optimized to be used in chemical and plasmonic sensors and as a single molecule SERS detection platform.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Low-Cost, Disposable, Flexible and Highly Reproducible Screen Printed SERS Substrates for the Detection of Various Chemicals

Ideal SERS substrates for sensing applications should exhibit strong signal enhancement, generate a reproducible and uniform response, and should be able to fabricate in large-scale and low-cost. Herein, we demonstrate low-cost, highly sensitive, disposable and reproducible SERS substrates by means of screen printing Ag nanoparticles (NPs) on a plastic PET (Polyethylene terephthalate) substrate...

متن کامل

Soft UV nanoimprint lithography-designed highly sensitive substrates for SERS detection

We report on the use of soft UV nanoimprint lithography (UV-NIL) for the development of reproducible, millimeter-sized, and sensitive substrates for SERS detection. The used geometry for plasmonic nanostructures is the cylinder. Gold nanocylinders (GNCs) showed to be very sensitive and specific sensing surfaces. Indeed, we demonstrated that less than 4 ×10(6) avidin molecules were detected and ...

متن کامل

Highly Uniform and Reproducible Surface Enhanced Raman Scattering on Air-stable Metallic Glassy Nanowire Array

Preparation of surface enhanced Raman scattering (SERS) nanostructures with both high sensitivity as well as high reproducibility has always been difficult and costly for routine SERS detection. Here we demonstrate air-stable metallic glassy nanowire arrays (MGNWAs), which were prepared by a cheap and rapid die nanoimprinting technique, could exhibit high SERS enhancement factor (EF) as well as...

متن کامل

Spectroscopy on the wing: naturally inspired SERS substrates for biochemical analysis.

We show that naturally occurring chitinous nanostructures found on the wings of the Graphium butterfly can be used as substrates for surface-enhanced Raman scattering when coated with a thin film of gold or silver. The substrates were found to exhibit excellent biocompatibility and sensitivity, making them ideal for protein assaying. An assay using avidin/biotin binding showed that the substrat...

متن کامل

Fabrication of Semiconductor ZnO Nanostructures for Versatile SERS Application

Since the initial discovery of surface-enhanced Raman scattering (SERS) in the 1970s, it has exhibited a huge potential application in many fields due to its outstanding advantages. Since the ultra-sensitive noble metallic nanostructures have increasingly exposed themselves as having some problems during application, semiconductors have been gradually exploited as one of the critical SERS subst...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nanoscale

دوره 6 21  شماره 

صفحات  -

تاریخ انتشار 2014